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Abstract
The formulation of quantum phenomena via extended measures is reviewed
and the motion of an electron in a uniform magnetic field is modelled in
the quaternion measure theoretic framework. It is shown that there are
some geometric transformations that enable us to conjecture that forces of
electromagnetic origin may be a manifestation of the geometrical property of
the measure structure.

PACS numbers: 03.65.Ta, 03.50.−z, 03.70.+k

1. Introduction

The aim of this paper is to establish the viability of describing the various facets of quantum
phenomena through extended measures. In earlier papers (Srinivasan and Sudarshan 1994,
1996, Srinivasan 1997) extended measures, and measurable processes arising therefrom,
were studied with the specific aim of exploring their appropriateness in describing quantum
phenomena; early signals from such a study point to an interesting scenario; the very complex
nature of the basic measure employed is able to bring out interference and accommodate
violation of Bell’s inequalities (Youssef 1994, 1995) in sharp contrast with the traditional
positive definite measurable processes. It turns out (Srinivasan 1995, 1997) that the measure
density corresponding to a forced harmonic oscillator admits an explicit expression with a
characteristic asymptotic behaviour that eliminates the need for the ultraviolet cut-off and
provides a convergent result for the Lamb-shift without recourse to any renormalization
procedure. Apart from this, a model of a hydrogen atom and the motion of a charged particle
subject to a constant magnetic field have also been studied in the framework of complex
measure theory (Srinivasan 2001). In this paper, we wish to focus our attention on the general
analysis of the basic equations satisfied by the measure density. Specifically we demonstrate
that forces of electromagnetic origin may arise by a transformation of the coordinates employed
to characterize the measure density and that consequently a particle subject to a force may be
visualized as a free particle in a suitable product frame of reference. Thus we conjecture that the
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very measure structure employed to describe a phenomenon is viable enough to encompass in
itself appropriate geometric transformation properties consistent with the principle of general
relativity.

The motivation for the present approach stems from the ground reality that quantum
phenomena, as emerged through the early 20th century, are more an indication that probability
theory is not the right tool to model microphysics rather than the weighty historical evolution
by invoking quantum mechanics. The basic idea that probability theory needs modification
in order to make it an applicable tool to explain quantum phenomena is not entirely new
and perhaps goes back to Dirac (1942) (see also Youssef (2001)). More recently, Youssef
(1991, 1994, 1995) has made out a case for the description of quantum phenomena through the
use of ‘exotic’ probability theory. Our formulation of quantum phenomena through complex
measures and complex measurable processes in the first instance (Srinivasan and Sudarshan
1994, Srinivasan 1997) is simple in that it is the minimal extension of positive definite measure
that accommodates interference and ensures violation of Bell’s inequalities. However, it does
not bring out the characteristics of internal motion such as intrinsic spin. To accommodate
the same, a further extension of the measure structure is necessary and this is best done by
making a further generalization to quaternion measure and measurable processes. Although
the quaternion measure can be thought of as a vector measure, such measurable processes
have not been studied in the past. In earlier contributions (Srinivasan and Sudarshan 1996,
Srinivasan 1995, 1997) it has been shown that Pauli and Dirac structures can be brought out by
simple quaternion measurable processes that have the Markov property. In fact, quaternionic
analysis has been used in the literature (see De Leo and Rodrigues (1998a)) to bring out the
geometrical properties of the Dirac equation. However, our approach is distinct in that it starts
from a basic quaternion measure structure and identifies the standard equations as special cases
of the Fokker–Planck (FP) equation. A detailed account of quaternion measurable processes
can be found in Srinivasan (1995) and Srinivasan and Sudarshan (1996). To facilitate a proper
understanding, in the next section we provide a short summary of complex and quaternion
measurable processes that leads to the standard equations.

The layout of the paper is as follows. In section 2, a quick introduction to extended
measure theoretic framework is provided leading to the quaternion measure theoretic derivation
of the Dirac equation. The motion of a quantum oscillator is discussed with reference to the
transformation properties. In section 3, the motion of an electron in a uniform magnetic
field is described in the quantum measure theoretic framework (QMTF). The non-relativistic
approximation is shown to be consistent with the conventional Schrödinger–Pauli approach.
An explicit solution for the resulting equation is obtained in a closed form. The transformation
that leads to the solution is interpreted as the one that also leads to the characterization of
a free particle. The full relativistic version is also shown to lead to a free particle equation
under appropriate transformation of the product space of space–time and quaternion space
over which the basic measure density is defined.

2. Complex/quaternion measure

We first summarize the broad features of complex measure theoretic framework (CMTF).
We start with a measurable space (�,B); if µ1 and µ2 are any two signed measures
defined over (�,B), then the complex measure λ is defined by λ = µ1 + iµ2. Random
variables and stochastic processes are introduced in exactly the same manner as in the case of
non-negative measure (see, for example, Pitt (1963)); more details are provided in Srinivasan
and Sudarshan (1994). Next it is to be noted that the constraint λ(�) = 1 is imposed on the
measure structure; this ensures that the Chapman–Kolmogorov relation can be translated into
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a good differential equation. Apart from this, a further constraint |λ(A)| < ∞ is imposed; this
is just a formality and there are many exceptions, such as the free particle case.

To get to the central point, we note that we generally deal with the complex measure
density (CMD) of the coordinate. The dynamics is brought out by assuming that the stochastic
process of the coordinate is Markov in nature and essentially determined by the drift and
diffusion functions denoted respectively by A(x) and B(x). This in turn yields a differential
equation of the FP type for the CMD function governing the coordinate. The only cases that
have been covered so far are:

(i) free harmonic oscillator {A(x) = −iωx,B(x) = a constant = ih̄/m};
(ii) displaced/squeezed oscillator {A(x) = −iω(x − α), B(x) = a constant};

(iii) forced oscillator {A(x) = −iωx + F(t), B(x) = a constant}.
Encouraged by this, we have identified the quantum harmonic oscillator as a complex measured
diffusion process; interestingly the CMD becomes connected to the Feynman path integral
solution (Feynman and Hibbs 1965). In view of this it was thought worthwhile to investigate
the forced harmonic oscillator since the forcing term can be chosen as the matter current
in interaction with the field of quantum oscillators. Using strong constraints on the CMD
which are eventually satisfied in the case of the forced oscillator, the Hilbert space approach is
employed. It turns out (Srinivasan 1997) that the results can be put in correspondence with those
of Feynman and Hibbs (1965) particularly in the context of Lamb-shift calculations. However,
there is one significant difference; the integral over momentum converges, eliminating the need
for any ultraviolet cut-off. This provides an effective alternate way out since the calculations
from that level can be taken over in toto, the celebrated Feynman cut-off procedure itself being
capable of interpretation as a valid numerical approximation on the understanding that CMTF
is an independent basis for the interpretation of quantum phenomena. Apart from these, the
hydrogen atom and the motion of a charged particle subject to a constant magnetic field have
also been investigated within the framework of complex measurable processes.

To accommodate the degree of freedom due to intrinsic spin, the complex measure is
replaced by the quaternion measure where the quaternions are defined over the complex
field. As observed earlier the primary motivation for the introduction of the quaternion valued
measure stems from the fact that a particle with spin has intrinsic geometry as evidenced by the
rotational characteristics of the extra degrees of freedom. That a spinning particle such as an
electron has a characteristic jittery motion (zitterbewegung) is well recognized by physicists
starting with Dirac and serves as the guiding physical principle for modelling the free spinning
motion as a two-valued quaternion measurable process. At the outset it is worth mentioning
that this development describing zitterbewegung in terms of a two-valued quaternion measure
process does not have any connection to the quaternionic theory of electrons due to Hestenes
(1966), Adler (1995) and De Leo and Rodrigues (1998b) who essentially interpret Dirac
structure in terms of the geometry of the quaternions. Let us now briefly review our earlier
work on quaternionic measure.

In quaternion measure theoretic framework, we visualize the stochastic process as the
fusion of a two-valued process (corresponding to the helicity states) and a continuous drift
process describing the intrinsic dispersion. Thus instead of the CMD we start with the
quaternion measure densityπ+(x, t)(π−(x, t)), whereπ+(x, t) dx(π−(x, t) dx) represents the
quaternion measure that the particle is situated in (x,x + dx) and that the two-valued process
Z(t) takes the value 0(1) at position x. We assume that the process Z(t) is independent of the
process x and the drift is given in terms of conditional structure:

E[xj |Z(t) = 0] = E[Vj (x)] dt + o(dt) (1)

E[xj |Z(t) = 1] = −E[Vj (x)] dt + o(dt). (2)
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Next we choose

E[Vj (x)] = cσj . (3)

By adapting the FP method, we obtain

∂tπ+(x, t) = −c �σ · ∇(π+(x, t) − {λ+π+(x, t) − λ−π−(x, t)}, (4)

∂tπ−(x, t) = c �σ · ∇(π−(x, t) − {λ−π−(x, t) − λ+π+(x, t)}. (5)

At the outset we note that the π -functions are quaternion valued and can be represented by
the σ -matrices; we can post-multiply by arbitrary spinors to yield two-component objects
(two-spinors). Thus if we set

λ+ = λ− = −imc2/h̄ (6)

ψ =
[
π+

π−

]
exp{−imc2t/h̄} (7)

we obtain the Dirac equation in four-component form in the Weyl representation:

ih̄∂tψ = mc2

[
0 1
1 0

]
ψ + (h̄c/i)

[ �σ 0
0 −�σ

]
· ∇ψ. (8)

It is worth mentioning that Weyl representation is generally not in common use. Pauli (1980)
in his exposition of quantum mechanics used the Weyl representation at first. However,
he found that while the structure had good transformation properties under proper Lorentz
transformation, in the sense that the four-component system behaves as two units of two vectors,
under parity transformation the units became interchanged. This situation forced him to revert
back to the original Dirac representation. However, in QMTF, the two blocks correspond to
the two helicity states and admit a direct interpretation from a generalized probabilistic point
of view.

We now deal with the central theme; we first consider for the sake of clarity the free
harmonic oscillator in one dimension. If π(x, t) is the CMD of the coordinate x at time t , then
by the assumptions stated above we have the FP equation (Srinivasan 1997):

∂π(x, t)

∂t
= ∂

∂x
[iωxπ(x, t)] +

ih̄

2m

∂2π(x, t)

∂x2
. (9)

Equation (9) is solved by the transformation

ξ = xeiωt , τ = eiωt , π(x, t) = ρ(ξ, τ )eiωt (10)

that leads to

∂ρ(ξ, τ )

∂τ
= h̄

4mω

∂2ρ(ξ, τ )

∂ξ 2
(11)

which is a FP equation for a free particle. It is quite interesting to note that, if the real line used
for fixing the position of the particle, the time axis and the very complex measure undergo a
transformation corresponding to a harmonic oscillator, the particle executes a free motion in
the new configuration. The situation in the case of displaced and forced oscillators is exactly
the same. This apparently simple result acquires profound significance if we make note of
the fact that the electromagnetic field is a linear superposition of a large number of harmonic
oscillators over different frequencies.
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3. Motion of an electron in a uniform magnetic field

In section 2 we have discussed the free electron motion from the QMTF point of view. We
have shown that the derivation of the FP equation in QMTF leads to the Dirac equation in
Weyl representation provided we use the transformation (7). While the factor in the right-hand
side (rhs) of equation (7) may not appear to be significant, it is very crucial from the measure
theoretic point of view. In fact, it identifies the ground state as the stationary state with all
other states interpreted as quasi-stationary from a probabilistic view point, the connection to the
observable positive-definite probability arising from the introduction of modulus measure (see
Srinivasan (1997)). The next question we address is the modus operandi for the introduction
of the electromagnetic field. The electromagnetic field is introduced in conventional treatment
by the standard replacement

p → p − e
A

c
or − ih̄∇ → −ih̄∇ − e

A

c
;

in fact this was the procedure adopted by Dirac. Unfortunately we cannot justify such a
replacement in the FP system. Firstly, it has no probabilistic/measure theoretic basis; in fact it
disturbs the delicate balance of the distribution of the complex/quaternion measure and leads
to a different variational measure. Secondly, the possibility of interpreting the replacement
as the addition of a connection coefficient to render the derivative as a covariant one is too
much of an ad hoc assumption. It may be a reasonable idea to arrive at the same conclusion
by an examination of the geometric properties of the measure structure. With this in mind, we
attempt to model a specific situation wherein the electromagnetic field is of a simple nature
such as, for example, a pure magnetic field; we simplify this still further by assuming that it is
uniform. If B is the strength of the magnetic field which we assume to be in the z-direction,
there is an extra drift in addition to that defined by equations (1)–(3). Thus we take the drift
along the x- and y-directions respectively to be

−i
ω

2
(1 + λσ3)(x + iy) and − ω

2
(1 + λσ3)(x + iy),

where ω = eB/mc. The drift coincides for λ = 0 with that used earlier (Srinivasan 2001) to
deal with the case when spin is neglected. Thus instead of the set of equations (4) and (5) we
now have

∂tπ+(x, t) = −cσ · ∇π+(x, t) +
ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)π+(x, t)

+

[
i
mc2

h̄
+ iω(1 + λσ3)

]
π+(x, t) − i

mc2

h̄
π−(x, t) (12)

∂tπ−(x, t) = cσ · ∇π−(x, t) +
ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)π−(x, t)

+

[
i
mc2

h̄
+ iω(1 + λσ3)

]
π−(x, t) − i

mc2

h̄
π+(x, t). (13)

Written in matrix form the above set of equations reads

∂t

(
π+(x, t)

π−(x, t)

)
=

{
−cσ · ∇

(
1 0
0 −1

)
+

[
i
mc2

h̄
+ iω(1 + λσ3)

+
ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)

](
1 0
0 1

)
− i

mc2

h̄

(
0 1
1 0

)}(
π+(x, t)

π+(x, t)

)
.

(14)
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We now make a transformation which leads to a natural separation of large and small
components:

∂t

(
φ+(x, t)

φ−(x, t)

)
= 1√

2

(
1 1
1 −1

) (
π+(x, t)

π−(x, t)

)
. (15)

The above transformation also shows the connection between the present form and the standard
Dirac form. Thus we have

∂t

(
φ+(x, t)

φ−(x, t)

)
=

{
−cσ · ∇

(
0 1
1 0

)
+

[
i
mc2

h̄
+ iω(1 + λσ3)

+
ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)

] (
1 0
0 1

)
− i

mc2

h̄

(
1 0
0 −1

)} (
φ+(x, t)

φ+(x, t)

)
.

(16)

Expressed in components, we have

∂tφ+(x, t) = −cσ · ∇φ−(x, t) +

[
iω(1 + λσ3) +

ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)

]
φ+(x, t) (17)

∂tφ−(x, t) = −cσ · ∇φ+(x, t) +

[
2imc2

h̄
+ iω(1 + λσ3)

+
ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)

]
φ−(x, t). (18)

If in equation (18) we retain only the dominant terms, we have

2imc

h̄
φ−(x, t) = σ · ∇φ+(x, t) (19)

and on substitution equation (17) becomes

∂tφ+(x, t) = ih̄

2m
∇2φ+(x, t) +

[
iω(1 + λσ3) +

ω

2
(x + iy)(1 + λσ3)(i∂x + ∂y)

]
φ+(x, t). (20)

At this stage it is worth noting that the above equation for the ‘large component’ can be derived
directly by using the drift function together with the assumption that under the non-relativistic
approximation there is a non-vanishing diffusion function which is a constant equal to ih̄/2m.
To make contact with the usual Schrödinger–Pauli structure, we note that φ+ is a function of
σ3 (quaternion variable) only. Thus we can make the transformation

φ+(x, t) = ψ(x, t) exp

[
−mω

4h̄
(x2 + y2)(1 + λσ3)

]
(21)

which in turn leads to

ih̄∂tψ(x, t) = − h̄2

2m
∇2ψ(x, t) +

{
−ωh̄

2
(1 + λσ3) − h̄ω

2
Lz(1 + λσ3)

+
mω2

8
(1 + λσ3)

2(x2 + y2)

}
ψ(x, t). (22)

It is worth noting that the terms −(λω/2)h̄σ3(1+Lz) and −(h̄ω/2)Lz together yield the correct
magnetic moment interaction and magnetic energy for λ = 1/2. The ground-state energy is
zero for σ3 = −1 and Lz = 1 and there is a natural spin–orbit interaction built into the system.
While equation (21) is a bridge between the conventional theory and QMTF, it is φ+(x, t) that
is of any significance from the QMT point of view.
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Next we note that φ+(x, t) admits of a closed form solution. The quaternion analytic
treatment of equation (20) leading to an explicit solution is given in the appendix. The solution
in the cylindrical polar coordinate system is given by

φ+(x, t) = π0(z, t)π1(r, θ, t) (23)

where π0(z, t) is the free particle propagation given by

π0(z, t) =
(

m

2πh̄it

)1/2

exp i
m(z − z0)

2

2h̄t
(24)

while π1(r, θ, t) is given by

π1(r, θ, t) =
(

− mi

2πh̄
eiωt(1+λσ)τ−1

)
exp −mω

2h̄
AP (ρ, θ, t) (25)

P =
{[

ρ cos

(
ωt

2
[1 + λσ ] + θ

)
− r0 cos θ0

]2

+

[
ρ sin

(
ωt

2
[1 + λσ ] + θ

)
− r0 sin θ0

]2}
e−iωt(1+λσ) (26)

A = (1 + λσ)(1 − e−iωt cos λ cosωt) − i(mσ)e−iωt sin λωt

1 + e−2iωt − 2e−iωt cos λωt
(27)

ρ = rei(ωt/2)(1+λσ) (28)

where σ is used in the place of σ3 for notational simplicity.
It is interesting to note that π1(r, θ, t) has a limit as t → ∞ under the assumption

(ω → ω − iε, ε > 0) and is determined by

lim AP = (1 + λσ){[x − 1
2 (x0 − iy0)]

2 + [y − i
2 (x0 − iy0)]

2}. (29)

The normalization factor in equation (25) also has the correct limit to make the total measure
unity. As stated earlier, the choice λ = 1/2 leads to the correct value of the magnetic
moment of the electron; it also ensures correct asymptotic behaviour to ensure convergence
of the measure density. The solution given by equations (23)–(25) can be compared with that
obtained by the use of Schrödinger theory. The motion of an electron in a uniform magnetic
field was dealt with by Landau (1930) and Johnson and Lippmann (1946) who had obtained
explicitly the eigenfunctions of the canonical momentum operators; the parameters x0, y0

used in equation (29) correspond to the guiding centre coordinates. By using the Fourier
transform technique, it can be easily shown that there is a correlation between the momentum
in the x-direction (y-direction) and y0(x0). That such an entanglement is possible has been
noticed only very recently by Fan et al (2000) who have provided a demonstration by using the
standard operator theory in Fock space. However, the result relates to the special case when
spin motion is neglected. The solution as given by equation (29) brings out this aspect in an
equally transparent manner in a more general setting when spin motion is included.

We next come to the main theme of the paper. The solution given above is arrived at in the
appendix by the transformation of the independent variables from (r, θ) to (ρ, φ) specified by
equation (A.3) and t → τ given by equation (A.10) along with a transformation of the function
π1 itself given by equation (A.9). The cumulative effect of such a transformation is to yield
the FP equation (A.11) for a free particle (with no drift). In other words, in a new frame of
reference given by equations (A.3) and (A.10), the quaternion measure density as transformed
by equation (A.9) corresponds to that of a free particle subject to pure diffusion. Thus the
magnetic field is a manifestation of the geometry of the product space of space–time and the
quaternion space over which the measure is defined. Since this is an important conclusion,
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we explore whether the same conclusion can be arrived at in a more general situation when
the motion is relativistic as described by equation (14). We rewrite equation (14) using the
cylindrical polar coordinate system:

∂t

(
π+(z, r, θ, t)

π−(z, r, θ, t)

)
=

{
−cσ · ∇

(
1 0
0 −1

)
+

[
imc2

h̄
+ iω(1 + λσ3)

+
ω

2
(1 + λσ3)(ir∂r + ∂θ )

] (
1 0
0 1

)
− imc2

h̄

(
0 1
1 0

)} (
π+(z, r, θ, t)

π−(z, r, θ, t)

)
.

(30)

We next transform to characteristic coordinates

re(iωt/2)(1+λσ3) = ξ,
ωt

2
(1 + λσ3) − θ = φ. (31)

Using left multiplication for the chain rule of the derivative, we find that equation (30) reduces
to

∂t

(
π+

π−

)
=

{
−cζ̂ · ∇

(
1 0
0 −1

)
+

[
imc2

h̄
+ iω(1 + λσ3)

] (
1 0
0 1

)

− imc2

h̄

(
0 1
1 0

)} (
π+

π−

)
(32)

where

ζ̂ = (ζ̂1, ζ̂2, ζ̂3), ζ̂1 = σ1e(iωt/2)(1+λσ3), ζ̂2 = σ2e(iωt/2)(1+λσ3), ζ̂3 = σ3. (33)

If we now set

π± = e(iωt/2)(1+λσ3)+(imc2/h̄)tψ±, (34)

we obtain

∂

∂t

(
ψ+

ψ−

)
= −

{
cζ · ∇

(
1 0
0 −1

)
+

imc2

h̄

(
0 1
1 0

)} (
ψ+

ψ−

)
(35)

where

ζ = (ζ1, ζ2, ζ3), ζ1 = e−iωtλσ3σ1e(iωt/2)(1+λσ3)+iωtλσ3 ,

ζ2 = e−iωtλσ3σ2e(iωt/2)(1+λσ3)+iωtλσ3 , ζ3 = σ3.
(36)

Equation (35) represents the free particle FP equation in QMTF in a new frame of reference
where the quaternions have undergone a transformation given by equation (36) with the
coordinates having been transformed according to equation (31). Thus we can conclude that
the magnetic force is a manifestation of the geometrical transformation of the product space
of space–time and the quaternion space. While the scenario may appear to be similar to that
in the theory of gauge transformation, there are fundamental differences. In modern gauge
theory, forces of electromagnetic type (Abelian gauge) and other types (cf electroweak) are
assumed to arise from the connection coefficients of an associated charge space; the additional
forces that arise due to geometric transformation have no observable physical effect due to
gauge principle. However, in QMTF the situation is different; the transformation is on the
product space of space–time and quaternion space whereas the standard gauge transformation
is on the product space of space–time and a hypothetical charge space. Moreover, in the
standard approach, the probabilistic inferences are made on the basis of Born interpretation
which is externally imposed; on the other hand, in QMTF, probabilistic inference or rather Born
interpretation automatically flows. Thus, in QMTF the basic forces of electromagnetic type
are themselves manifestations of the geometric transformation of the product space. Of course
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we have dealt with special cases and have shown that there are geometric transformations that
lead to a frame of reference wherein the particle has a free motion. For instance, in the case
of a more general magnetic field (non-uniform), further research is necessary to arrive at the
appropriate FP equation. While on an intuitive basis it may be plausible, only with further
research in this direction can an affirmative statement in the most general form be made and,
until then, our statement has the status of a conjecture.

4. Summary and conclusions

In this paper we have reviewed several aspects of the extended measure theory approach with
special reference to some facets of quantum phenomena. The very complex nature of the
measure structure comes in handy to explain interference and violation of Bell’s inequalities.
On the other hand, the zitterbewegung character is appropriately modelled in terms of a two-
valued quaternion measure space, the quaternion nature of the measure being able to describe
aptly the intrinsic spin characteristics. The description of the harmonic oscillator in terms of
the complex measure is shown to have intrinsic geometric properties. In particular it is shown
that there is a transformation of the product space of space–time and complex plane describing
the measure in which the particle executes free diffusion. Since the electromagnetic field can
be considered as a weighted sum of independent oscillators distributed over different modes,
it is reasonable to conjecture the field itself as a manifestation of the geometric properties of
the product space. Encouraged by this, we have examined the motion of a spinning particle
under the influence of a uniform magnetic field. The FP equation for the quaternion measure
density is derived using appropriate quaternion drifts; the non-relativistic approximation is
shown to lead to the conventional Schrödinger–Pauli structure with the spin–orbit interaction
leading to the correct value for the magnetic moment of the particle. A closed form solution
for the quaternion measure density is provided and as a bi-product we arrive at the appropriate
geometric transformation of the product space leading to the preferred frame of reference
wherein the particle executes free diffusion. Finally, it is shown that, when the motion is
relativistic, there is a frame of reference and a base space of quaternions over which the particle
disperses freely. It is to be noted that this characteristic is distinct from the familiar one in the
modern gauge theory; the difference lies in the fact that forces of electromagnetic origin are
shown to arise by geometrical transformation. It is to be noted that, in conventional modern
gauge theory, a hypothetical charge space is to be invoked for identification of connection
coefficients with electromagnetic/electroweak forces. On the other hand, in QMTF, we do not
have to go beyond the basic measure structure, the product space of space–time and quaternion
space having enough degrees of freedom to generate forces. In the specific instance of a uniform
magnetic field, we have shown that it is indeed possible to arrive at a frame of reference in
which the magnetic field disappears. In other words, the magnetic field is shown to be a
manifestation of the geometric properties of the product space. Since we have not considered
the most general situation, our statement must be taken to be a conjecture.

Appendix

Our object is to obtain a closed form solution forφ+(x, t) satisfying equation (20). At the outset,
we note that φ+ is a function of σ3 only and hence in the analysis there are no problems of non-
commutativity. We use cylindrical polar coordinates and the functional symbol π(z, r, θ, t);
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then equation (20) becomes

∂tπ(z, r, θ, t) =
{

iω(1 + λσ) +
ω

2
(1 + λσ)(ir∂r + ∂θ ) +

ih̄

2m
∇2

}
π(z, r, θ, t) (A.1)

where for convenience we use σ in place of σ3. We introduce the characteristics by

−dt

1
= dr

i(ω/2)(1 + λσ)r
= dθ

(ω/2)(1 + λσ)
(A.2)

whose integrals are given by

r exp i
ωt

2
(1 + λσ) = ρ,

ωt

2
(1 + λσ) = φ. (A.3)

Using (ρ, φ) in place of (r, θ), we find that equation (A.1) reduces to

∂tπ = ih̄

2m
{∂zz + eiωt(1+λσ)∇2 + iω(1 + λσ)}π (A.4)

where ∇2 is the two-dimensional Laplacian with respect to the polar coordinates (ρ, φ). We
solve equation (A.4) by separation of variables and set

π = π0(z, t)π1(ρ, φ, t) (A.5)

where π0 is scalar valued and π1 is a function of the quaternion σ . Setting

∂tπ0 − ih̄

2m
∂zzπ0 = f (t)π0 (A.6)

∂tπ1(ρ, φ, t) =
[

iω(1 + λσ) +
ih̄

2m
eiωt(1+λσ)∇2 − f (t)

]
π1(ρ, φ, t). (A.7)

Thus the arbitrary function f (t) becomes eliminated and π0(z, t) corresponds to the free
particle kernel in the variable z:

π0(z, t) =
(

m

2πh̄it

)1/2

exp +
im(z − z0)

2

2h̄t
. (A.8)

Setting

π1(ρ, φ, t) = χ(ρ, φ, t) exp[iωt(1 + λσ)] (A.9)

τ =
∫ t

0
eiωu(1+λσ)du (A.10)

we find

∂τχ = ih̄

2m
∇2χ (A.11)

which is the FP equation for a free particle. Thus the solution for π1 can be written as

π1(ρ, φ, t) =
[(−mi

2πh̄

)
eiωt(1+λσ)τ−1

]
exp

{
−mω

2h̄
A[(ρ cos θ − ρ0 cos θ0)

2

+ (ρ sin θ − ρ0 sin θ0)
2]e−iωt(1+λσ)

}
(A.12)

where

A = (1 + λσ)(1 − e−iωt ) − i(λ + σ1)e−iωt sin λωt

1 + e−2iωt − 2e−iωt cos λωt
. (A.13)
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We now simplify the term in square brackets under exponential and finally obtain

π1(ρ, φ, t) =
(

− mi

πh̄
eiωt(1+λσ)τ−1

)
exp

{
−mω

2h̄
AP (ρ, φ, t)

}
(A.14)

P(ρ, φ, t) =
{(

ρ cos

(
ωt

2
[1 + λσ ] + θ

)
− r0 cos θ0

)2

+

(
ρ sin

(
ωt

2
[1 + λσ ] + θ

)
− r0 sin θ0

)2}
e−iω(1+λσ). (A.15)
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